Université du Québec en Outaouais

Département d'informatique et d'ingénierie

Sigle: GEN6093 Gr. 01

Titre : Conception avancée des microsystèmes intégrés

Session: Hiver 2023 Horaire et local

Professeur: Oukaira, Aziz

1. Description du cours paraissant à l'annuaire :

Objectifs

Permettre aux étudiants de maîtriser les connaissances nécessaires pour concevoir et développer des microsystèmes intégrés, ainsi que d'approfondir leurs connaissances sur les techniques de pointe de conception et de prototypage rapide.

Contenu

Conception des microsystèmes intégrés à très grande échelle et maîtrise de toutes les étapes de conception. Transistor MOS: construction, fonctionnement, analyse simplifiée, modèle physique détaillé, phénomènes secondaires et modèles SPICE. Logique, technologie et procédé CMOS. Réduction de l'échelle et évolution technologique. Circuit VLSI, LAIC, WSI et SoC. Méthodes de conception. Conception de circuits intégrés: circuits logiques et analogiques, analyse mathématique et simulations. Convertisseurs A/N et N/A. Considérations pratiques d'intégration et de réalisation de circuits mixtes (numérique/analogique). Intégration des microsystèmes de capteurs intelligents. ASIC. Approche Top Down. Conception, simulation et synthèse de circuits et modules logiques à l'aide du langage de description matérielle. Prototypage rapide. Réalisations de projets d'intégration avec les outils de conception assistée par ordinateur du plus haut niveau (ex. Matlab/Simulink) jusqu'au plus bas niveau (ex. Cadence).

Descriptif - Annuaire

2. Objectifs spécifiques du cours :

À la fin du cours l'étudiant(e) :

- Pourra faire de la conception avancée des microsystèmes intégrés sur puce et d'en réaliser un prototype sur support programmable;
- Maîtriser toutes les étapes du flot de conception des circuits VLSI;
- Pourra utiliser une collection d'outils de conception assistée par ordinateur permettant de développer l'intuition sur ce qu'est réellement un système numérique, c'est-à-dire l'interaction entre les entrées, les sorties, les états et la synchronisation des signaux;
- Développer l'habileté à concevoir des circuits séguentiels synchrones de type contrôleur;
- Améliorer ses connaissances sur les systèmes modulaires et les problématiques d'interconnexion entre modules (notion de GlueLogic);
- Mettre en pratique ses habilités en développant des systèmes numériques à l'aide de composants programmables;
- Développer ses capacités d'abstraction et de conception de haut niveau TOP LEVEL DESIGN;
- Appliquer les méthodes de conceptions aux systèmes programmables;
- Se familiariser avec les notions de Prototypage rapide, vérification matérielle, placement et routage en conception des systèmes digitaux programmables dans l'environnement Xilinx ou Altera;
- Apprendre à déterminer la pertinence de réaliser un circuit intégré programmable;
- Connaître les critères de sélection d'une méthode de conception;
- Connaître les concepts de base de la conception pour la testabilité DFT et du Design Reuse.

Logiciels utilisés : Mentor Graphics (Siemens EDA) et Cadence, ou Xilinx et Altera avec leurs outils de synthèse et de P&R.

3. Stratégies pédagogiques :

Les formules suivantes seront utilisées :

- 1. Cours magistral (une période par semaine appuyée par des travaux pratiques au laboratoire).
- 2. Travaux pratiques (intégrés dans les séances de cours) incluant un projet de conception de CI à réaliser en équipe.
- 3. Lecture personnelle (Chapitres de livres et « Tutorials »).

La chronologie des séances de laboratoires sera disponible sur le site Moodle du cours.

En résumé, le cours consiste en :

- 39 heures de leçons magistrales appuyées par des travaux pratiques au laboratoire
- 6 heures d'examens

Total: 45 heures

Les laboratoires pratiques sont intégrés dans les séances de cours.

*La date des présentations peut être déplacée selon les disponibilités.

4. Heures de disponibilité ou modalités pour rendez-vous :

Sur rendez-vous.

5. Plan détaillé du cours sur 15 semaines :

	allie du cours sur 15 semaines :	
Semaine	Thèmes	Dates
1	INTRODUCTION GÉNÉRALE AUX MICROSYSTÈMES INTÉGRÉS	12 janv. 2023
2	LANGAGE DE PROGRAMMATION MATÉRIEL VHDL ET SYNTHÈSE	
	Travaux de conception dirigés sur la simulation logique des Systèmes numériques	19 janv. 2023
	MODÈLES DE TRANSISTORS MOS	
3	MODELES DE TRANSISTORS MOS	
	Un séminaire sera présenté par le professeur Jamal Zbitou notre invité spécial	26 janv. 2023
	Titre: Développement Des Nouvelles Structures MEMS-RF pour des Systèmes Numériques utilisant des Antennes Reconfigurables pour des Applications de Communications Sans Fil	
4	FLOT DE DESIGN NUMÉRIQUE CIRCUIT SEMI-DÉDIÉ	
	Travaux de conception dirigés sur la simulation fonctionnelle des Systèmes numériques synthétisable	02 févr. 2023
5	SYNTHÈSE PHYSIQUE	
		09 févr. 2023
	Travaux de conception dirigés sur la Synthèse avec RLT compiler	
6	LAYOUT DESIGN (DESSIN DES MASQUES)	16 64 2022
	Travaux de conception dirigés sur la Simulation post-synthèse	16 févr. 2023
7	FLOT DE DESIGN DES SYSTÈMES RADIO-FRÉQUENCES SUR PUCE (RF-SiP)	
	Travaux de conception dirigés sur le Placement et routage du circuit synthétisé	23 févr. 2023
8	EXAMEN DE MI-SESSION	02 mars 2023
9	SEMAINE D'ÉTUDES	09 mars 2023
10	FLOT DE DESIGN DES SYSTÈMES RADIO-FRÉQUENCES SUR PUCE (RF-SiP) (suite)	
		16 mars 2023
	Travaux de conception dirigés sur la Simulation post-placement et routage	

11	WSN-MONITORING Travaux de conception dirigés sur la simulation d'un transistor avec cadence6 - 65nm	23 mars 2023
12	PLATEFORME Crossbow Travaux de conception dirigés sur la simulation d'un inverseur avec cadence6-65nm	30 mars 2023
13	PRÉSENTATION DU PROJET DE CONCEPTION	06 avril 2023
14	PRÉSENTATION DU PROJET DE CONCEPTION (suite)	13 avril 2023
15	EXAMEN FINAL	20 avril 2023

6. Évaluation du cours :

- Travaux pratiques 30 % (Dans le cas de non-disponibilité des outils Cadence et Mentor Graphics, les laboratoires seront remplacés par un travail équivalent sur les plateformes Xilinx ou Altera)
- Examen de mi-session 30 %
- Examen final 40 %

Il faut obtenir une moyenne minimale de 50 % aux travaux pratiques pour que les notes des travaux comptent.

Attention : La présence aux cours est obligatoire. Trois absences ou plus mèneront à un échec automatiquement.

7. Politiques départementales et institutionnelles :

- Politique du département d'informatique et d'ingénierie relative à la tenue des examens
- Note sur le plagiat et sur la fraude
- Politique relative à la qualité de l'expression française écrite chez les étudiants et les étudiantes de premier cycle à l'UQO
- Absence aux examens : cadre de qestion, demande de reprise d'examen (formulaire)

La communauté universitaire s'engage à lutter contre les inconduites, le harcèlement et les violences à caractère sexuel. Dénonçons toute forme de violence.

Ensemble, accomplissons un pas de plus en complétant la formation obligatoire en ligne : "La banalisation des violences à caractère sexuel".

uqo.ca/bimi/formation-obligatoire

Pour de plus amples renseignements consultez :

bimi@uqo.ca

8. Principales références :

- 1. « Conception et vérification des circuits VLSI », Éditions de l'École Polytechnique de Montréal, Yvon Savaria, 1988.
- 2. Documents pour les cours 3.583, ELE6304 et ELE6305.
- 3. Manuel d'exercices, Cours de VLSI, A. Belhaouane, N. Bélanger, Y. Savaria et A. Boubguira.
- 4. "The VHDL Cookbook", Peter J. Ashenden, 1990.
- 5. Analog VLSI Circuits for the Perception of Visual Motion Alan A. Stocker ISBN: 978-0-470-85491-4 Hardcover 242 pages, May 2006. Wiley.

- Introduction to VLSI Circuits and Systems, John P. Uyemura, ISBN: 978-0-471-12704-8, 656 pages, August 2001.
 Wiley.
- 7. Modern Semiconductor Devices for Integrated Circuits, Chenming C. Hu, ISBN-10: 0136085253, ISBN-13: 9780136085256, Prentice Hall, 2010, 384 pp, 03/22/2009.
- 8. VHDL for Engineers, Kenneth L. Short, University of New York-Stony Brook, ISBN-10: 0131424785, ISBN-13: 9780131424784, Prentice Hall, 2009, 720 pp, 04/09/2008.
- 9. A Designer's Guide to VHDL Synthesis, Ott, Douglas E., Wilderotter, Thomas J., Kluwer Academic Publishers, v. 4, no. 1, November 2007, ISBN: 9780792394723, 340 pages.

Quelques bons titres sur les systèmes numériques :

- 1. David J. Comer, "Digital logic and state machine design", 3rd Edition, New York: Oxford University Press, c1995, ISBN 0195107233, Pages: 573.
- 2. Digital Design: Principles and Practices, Wakerly, John F. ISBN 10: 0131863894 / ISBN 13: 9780131863897, 2005.
- CMOS VLSI Design: A Circuits and Systems Perspective, 3/E, Neil Weste, Macquarie University and The University of Adelaide, David Harris, Harvey Mudd College, ISBN-10: 0321149017, ISBN-13: 9780321149015, Addison-Wesley, 2005, 800 pp.
- 4. Digital Principles and Design with CD-ROM, 1st Edition, Donald D. Givone, SUNY BUFFALO 2003, ISBN-13 9780072551327. Mc-Graw Hill.
- 5. Fundamentals of Digital Logic with VHDL Design with CD-ROM, 3rd Edition.
- Stephen Brown, Associate Professor, Dept. of Electrical & Computer Engineering, University of Toronto, Zvonko Vranesic, Professor, Dept. of Electrical & Computer Engineering & Computer Science University of Toronto, 960 pages, 2009, ISBN-13 9780077221430. Mc-Graw Hill.
- 7. Contemporary Logic Design, 2/E, Randy H. Katz, Gaetano Borriello, ISBN-10: 0201308576, ISBN-13: 9780201308570, Prentice Hall, 2005, Paper; 608 pp.
- 8. Fundamentals of Logic Design, 5th edition, Charles H. Roth, 2001, Thomson Learning, ISBN: 0534378048.
- 9. Computer Systems Design and Architecture, 2/E, Vincent P. Heuring, Harry F. Jordan, Boulder, ISBN-10: 0130484407, ISBN-13: 9780130484406, Prentice Hall, 2004, Paper; 608 pp.
- 10. Application Specific Integrated Circuits, Michael John Sebastian Smith, Addison-Wesley, 1026 pp, August 1997, ISBN 13: 9780201500226, ISBN10: 0-201-50022-1.
- 11. A Designer's Guide to VHDL Synthesis, Ott, Douglas E., Wilderotter, Thomas J., Kluwer Academic Publishers, v. 4, no. 1, November 2007, ISBN: 9780792394723, 340 pages.
- 12. Logic Synthesis Using Synopsys, Pran Kurup and Taher Abbasi, Kluwer Academic, ISBN 10: 079239786X, ISBN13: 9780792397861, 2ND 1997.
- 13. Principle of CMOS VLSI design: A Systems Perspective. N.H.E. Weste, Kamram Eshraghian. Addison-Wesley, 1993, second edition, ISBN 10:0201533766 / ISBN 13:9780201533767.
- 14. Digital Design: Principles and Practices Package, 4/E, John F. Wakerly, Cisco Systems, Inc. Stanford University, ISBN-10: 0131733494 ISBN-13: 9780131733497, Prentice Hall, 2006, 928 pp. 0131863894.
- 15. The Designer's Guide to VHDL, Ashenden, Peter J. ISBN 10: 1558606742 / ISBN 13: 9781558606746, 2001.

Manuels de cours disponibles à la COOP-UQO

- 1. Livre obligatoire : « Conception et vérification des circuits VLSI », Éditions de l'École Polytechnique de Montréal, Yvon Savaria, 1988.
- 2. Documents obligatoires à télécharger à l'adresse suivante : http://www.cours.polymtl.ca/ele4304/index.htm; Documents pour les cours 3.583, ELE6304 et ELE6305.
- 3. Manuel d'exercices obligatoire : Manuel d'exercices, Cours de VLSI, A. Belhaouane, N. Bélanger, Y. Savaria et A. Boubguira.

Une série de transparents sera disponible sur le site Moodle.

9. Page Web du cours :

https://moodle.ugo.ca